晶闸管
来源:作者:日期:2017-11-23 16:29:38点击:8292次
晶闸管(Thyristor)是晶体闸流管的简称,又被称做可控硅整流器,以前被简称为可控硅;1957年美国通用电气公司开发出世界上第一款晶闸管产品,并于1958年将其商业化;晶闸管是PNPN四层半导体结构,它有三个极:阳极,阴极和控制极; 晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。
中文名 | 外文名 | 全名 | 别名 |
晶闸管 | Thyristor | 晶体闸流管 | 可控硅整流器 |
目录
1、晶闸管简介
2、晶闸管工作原理
3、晶闸管主要用途
4、晶闸管分类
5、晶闸管的基本特性
6、晶闸管历史
7、使用注意事项
8、单向晶闸管的检测
晶闸管简介
晶体闸流管(英语:Thyristor),简称晶闸管,指的是具有四层交错P、N层的半导体装置。最早出现与主要的一种是硅控整流器(Silicon Controlled Rectifier,SCR),中国大陆通常简称可控硅,又称半导体控制整流器,是一种具有三个PN结的功率型半导体器件,为第一代半导体电力电子器件的代表。晶闸管的特点是具有可控的单向导电,即与一般的二极管相比,可以对导通电流进行控制。晶闸管具有以小电流(电压)控制大电流(电压)作用,并体积小、轻、功耗低、效率高、开关迅速等优点,广泛用于无触点开关、可控整流、逆变、调光、调压、调速等方面。
晶闸管工作原理
晶闸管在工作过程中,它的阳极(A)和阴极(K)与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。
半控型晶闸管的工作条件:
2.1.1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。
2.1.2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性。
2.1.3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。门极只起触发作用。
2.1.4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。
全控型晶闸管的工作条件:
2.2.1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。
2.2.2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压(或电流)的情况下晶闸管才导通。这时晶闸管处于正向导通状态。
2.2.3. 一旦晶闸管开始导通,它就被钳住在导通状态,而此时门极电流可以取消。晶闸管不能被门极关断,像一个二极管一样导通,直到电流降至零和有反向偏置电压作用在晶闸管上时,它才会截止。当晶闸管再次进入正向阻断状态后,允许门极在某个可控的时刻将晶闸管再次触发导通
晶闸管主要用途
普通晶闸管最基本的用途就是可控整流。大家熟悉的二极管整流电路属于不可控整流电路。如果把二极管换成晶闸管,就可以构成可控整流电路、逆变、电机调速、电机励磁、无触点开关及自动控制等方面。现在我画一个最简单的单相半波可控整流电路〔图4(a)〕。在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,晶闸管被触发导通。现在,画出它的波形图〔图4(c)及(d)〕,可以看到,只有在触发脉冲Ug到来时,负载RL上才有电压UL输出(波形图上阴影部分)。Ug到来得早,晶闸管导通的时间就早;Ug到来得晚,晶闸管导通的时间就晚。通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL(阴影部分的面积大小)。在电工技术中,常把交流电的半个周期定为180°,称为电角度。这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内晶闸管导通的电角度叫导通角θ。很明显,α和θ都是用来表示晶闸管在承受正向电压的半个周期的导通或阻断范围的。通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。
晶闸管类型
晶闸管一词有时单指SCR;有时泛指具有四层或以上交错P、N层的半导体装置,如单向晶闸管(SCR)、 双向晶闸管(TRIAC)、 可关断晶闸管(GTO)、 SIT、及其他种类等。
单向晶闸管是PNPN四层结构,形成三个PN结,可以等效为PNP、NPN两晶体管组成的复合管,具有三个外电极:阳极A(Anode),阴极K(Cathode)和控制极G(Gate)。在A、K之间加上正电压后,管子并不导通;当控制极G加上正电压(相对于阴极K而言)后才导通;此时再去掉控制极的电压,管子依然能够保持导通。
双向晶闸管可以等效为两个单向晶闸管反向并联。因双向晶闸管正负双向均可以控制导通,故控制极G外的另外两个电极不再称阴极阳极,而改称为主电极MT1、MT2或T1、T2。当G与MT1间给予适当的讯号时,MT2与MT1间即可导通
晶闸管分类
4.1关断导通控制
晶闸管按其关断、导通及控制方式可分为普通晶闸管(SCR)、双向晶闸管(TRIAC)、逆导晶闸管(RCT)、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管(TT国外,TTS国内)和光控晶闸管(LTT)等多种。
4.2引脚和极性
晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。
4.3按封装形式
晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。
4.4电流容量分类
晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。通常,大功率晶闸管多采用陶瓷封装,而中、小功率晶闸管则多采用塑封或金属封装。
4.5按关断速度
晶闸管按其关断速度可分为普通晶闸管和快速晶闸管,快速晶闸管包括所有专为快速应用而设计的晶闸管,有常规的快速晶闸管和工作在更高频率的高频晶闸管,可分别应用于400HZ和10KHZ以上的斩波或逆变电路中。(备注:高频不能等同于快速晶闸管)
晶闸管的基本特性
5.1、晶闸管的静态伏安特性
第I象限的是正向特性有阻断状态和导通状态之分。在正向阻断状态时,晶闸管的伏安特性是一组随门极电流的增加而不同的曲线簇。当IG足够大时,晶闸管的正向转折电压很小,可以看成与一般二极管一样,第III象限的是反向特性晶闸管的反向特性与一般二极管的反向特性相似。
IG=0时,器件两端施加正向电压,为正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。随着门极电流幅值的增大,正向转折电压降低导通后的晶闸管特性和二极管的正向特性相仿。
5.2. 动态特性
与二极管类似,开通、关断过程产生动态损耗晶闸管的开通和关断过程波形
5.2.1) 开通过程
延迟时间td:门极电流阶跃时刻开始,到阳极电流上升到稳态值的10%的时间上升时间tr:阳极电流从10%上升到稳态值的90%所需的时间开通时间tgt:以上两者之和, tgt=td+ tr 普通晶闸管延迟时间为0.5~1.5s,上升时间为0.5~3s
5.2.2) 关断过程
反向阻断恢复时间trr:正向电流降为零到反向恢复电流衰减至近于零的时间
正向阻断恢复时间tgr:晶闸管要恢复其对正向电压的阻断能力还需要一段时间在正向阻断恢复时间内如果重新对晶闸管施加正向电压,晶闸管会重新正向导通。实际应用中,应对晶闸管施加足够长时间的反向电压,使晶闸管充分恢复其对正向电压的阻断能力,电路才能可靠工作。关断时间tq:trr与tgr之和,即 tq=trr+tgr普通晶闸管的关断时间约几百微秒,这是设计反向电压设计时间的依据。
晶闸管本身的压降很小,在1V左右
导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态。IH称为维持电流。
晶闸管上施加反向电压时,伏安特性类似二极管的反向特性晶闸管的门极触发电流从门极流入晶闸管,从阴极流出阴极是晶闸管主电路与控制电路的公共端门极触发电流也往往是通过触发电路在门极和阴极之间施加触发电压而产生的晶闸管的门极和阴极之间是PN结J3,其伏安特性称为门极伏安特性。为保证可靠、安全的触发,触发电路所提供的触发电压、电流和功率应限制在可靠触发区。
晶闸管历史
半导体的出现成为20世纪现代物理学其中一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,特点为小功率、集成化,作为信息的检出、传送和处理的工具;而另一类就是电力电子器件,特点为大功率、快速化。1955年,美国通用电气公司研发了世界上第一个以硅单晶为半导体整流材料的硅整流器(SR),1957年又开发了全球首个用于功率转换和控制的可控硅整流器(SCR)。由于它们具有体积小、重量轻、效率高、寿命长的优势,尤其是SCR能以微小的电流控制较大的功率,令半导体电力电子器件成功从弱电控制领域进入了强电控制领域、大功率控制领域。在整流器的应用上,晶闸管迅速取代了水银整流器(引燃管),实现整流器的固体化、静止化和无触点化,并获得巨大的节能效果。从1960年代开始,由普通晶闸管相继衍生出了快速晶闸管、光控晶闸管、不对称晶闸管及双向晶闸管等各种特性的晶闸管,形成一个庞大的晶闸管家族。
但晶闸管本身存在两个制约其继续发展的重要因素。一是控制功能上的欠缺,普通的晶闸管属于半控型器件,通过门极(控制极)只能控制其开通而不能控制其关断,导通后控制极即不再起作用,要关断必须切断电源,即令流过晶闸管的正向电流小于维持电流。由于晶闸管的关断不可控的特性,必须另外配以由电感、电容及辅助开关器件等组成的强迫换流电路,从而使装置体积增大,成本增加,而且系统更为复杂、可靠性降低。二是因为此类器件立足于分立元件结构,开通损耗大,工作频率难以提高,限制了其应用范围。1970年代末,随着可关断晶闸管(GTO)日趋成熟,成功克服了普通晶闸管的缺陷,标志着电力电子器件已经从半控型器件发展到全控型器件。
使用注意事项
选用可控硅的额定电压时,应参考实际工作条件下的峰值电压的大小,并留出一定的余量。
7.1、选用可控硅的额定电流时,除了考虑通过元件的平均电流外,还应注意正常工作时导通角的大小、散热通风条件等因素。在工作中还应注意管壳温度不超过相应电流下的允许值。
7.2、使用可控硅之前,应该用万用表检查可控硅是否良好。发现有短路或断路现象时,应立即更换。
7.3、严禁用兆欧表(即摇表)检查元件的绝缘情况。
7.4、电流为5A以上的可控硅要装散热器,并且保证所规定的冷却条件。为保证散热器与可控硅管心接触良好,它们之间应涂上一薄层有机硅油或硅脂,以帮于良好的散热。
7.5、按规定对主电路中的可控硅采用过压及过流保护装置。
7.6、要防止可控硅控制极的正向过载和反向击穿。
单向晶闸管的检测
根据普通晶闸管的结构可知,门极与阴极之间为一个PN结,具有单向导电性,而阳极与门极之间有两个反极性串联的PN结。因此通过万用表R*100或R*1K挡测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。
具体方法是,将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极,若测量结果有一次阻值为几百欧姆,则可判定黑表笔接的是门极。在阻值为几百欧姆的测量中,红表笔接的是阴极,而在阻值为几千欧姆的测量中,红表笔接的是阳极,若两次测出的阻值均很大,则说明黑表笔接的不是门极,应用同样的方法改测其他电极,直到找出三个电极为止。
也可以测任两脚之间正反向电阻,若正反向电阻均接近无穷大,则两极即为阳极和阴极,而另一脚为门极。
普通晶闸管也可能根据其封装形式来判断各电极。螺栓形普通晶闸管的螺栓一端为阳极,较细的引线端为门极,较粗的引线端为阴极。
平板型普通晶闸管的引出线端为门极,平面端为阳极,另一端为阴极。
塑封(TO-220)普通晶闸管的中间引脚为阳极,且多为自带散热片相连。